B-Factory Intermediate DC Magnet Power Systems Reliability Modeling and Results
نویسندگان
چکیده
RELIABILITY MODELING AND RESULTS* P. Bellomo, A. Donaldson, D. MacNair, SLAC, Stanford, CA 94309, USA Abstract The B-Factory is a high-energy physics facility for studying matter versus anti-matter asymmetry. It utilizes 200 Intermediate DC power systems, employing 2.5 to 17kW switchmode converters, to supply beam-shaping magnets with regulated current. Redundancy and modularity were considered to maximize reliability and minimize mean time to replace (MTTR), within technical limitations and cost constraints. Described are the configurations that were considered and reliability prediction models. The SLAC decision to employ a single converter was sound. However, 2 years of operation have confirmed that converter reliability must be improved.
منابع مشابه
Dynamic Harmonic Modeling and Analysis of VSC-HVDC Systems
Harmonics have become an important issue in modern power systems. The widespread penetration of non-linear loads to emerging power systems has turned power quality analysis into an important operation issue under both steady state and transient conditions. This paper employs a Dynamic Harmonic Domain (DHD) based framework for dynamic harmonic analysis of VSC-HVDC systems. These systems are wide...
متن کاملOptimization of Specific Power of Surface Mounted Axial Flux Permanent Magnet Brushless DC Motor for Electrical Vehicle Application
Optimization of specific power of axial flux permanent magnet brushless DC (PMBLDC) motor based on genetic algorithm optimization technique for an electric vehicle application is presented. Double rotor sandwiched stator topology of axial flux permanent magnet brushless DC motor is selected considering its best suitability in electric vehicle applications. Rating of electric motor is determined...
متن کاملDouble Layer Magnet Design Technique for Cogging Torque Reduction of Dual Rotor Single Stator Axial Flux Brushless DC Motor
Cogging torque is the major limitation of axial flux permanent magnet motors. The reduction of cogging torque during the design process is highly desirable to enhance the overall performance of axial flux permanent magnet motors. This paper presents a double-layer magnet design technique for cogging torque reduction of axial flux permanent magnet motor. Initially, 250 W, 150 rpm axial flux brus...
متن کاملDesign and optimization of dc brushless permanent magnet motor
Electric motors that have found wide application in various sectors of industry Have unique features such as high reliability, high efficiency, quick acceleration and have small sizes. Brushless DC motors meet these requirements well. In this study, the design of a brushless DC motor speed limits for the particular application at 1800 rpm that can be equivalent to 140 watts output was provided....
متن کاملCogging Torque Reduction of Sandwiched Stator Axial Flux Permanent Magnet Brushless DC Motor using Magnet Notching Technique
Cogging torque reduction of axial flux permanent magnet brushless dc (PMBLDC) motor is an important issue which demands attention of machine designers during design process. This paper presents magnet notching technique to reduce cogging torque of axial flux PMBLDC motor designed for electric vehicle application. Reference axial flux PMBLDC motor of 250 W, 150 rpm is designed with 48 stator slo...
متن کامل